

Extending Post-Processing and Run Time Capabilities

of the CTH Shock Physics Code

by Jerry A. Clarke and Eric R. Mark

ARL-TR-3576 August 2005

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

DESTRUCTION NOTICE Destroy this report when it is no longer needed. Do not return it to
the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-3576 August 2005

Extending Post-Processing and Run Time Capabilities
of the CTH Shock Physics Code

Jerry A. Clarke and Eric R. Mark

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

 August 2005
2. REPORT TYPE

3. DATES COVERED (From - To)

 July 2004 to July 2005
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

 Extending Post-Processing and Run Time Capabilities of the CTH Shock
 Physics Code

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

 5UH7FC

5e. TASK NUMBER

6. AUTHOR(S)

 Jerry A. Clarke and Eric R. Mark (both of ARL)

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
Computational and Informational Sciences Directorate
Aberdeen Proving Ground, MD 21005-5066

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-3576

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

CTH, which is not an acronym, is a multi-material, large deformation, strong shock wave, solid mechanics code that runs on
most UNIX workstations and massively parallel processing supercomputers. CTH is one of the most heavily used
computational structural mechanics codes on Department of Defense high performance computing platforms. Although CTH
includes some internal graphics capabilities, it is preferable to take advantage of widely used scientific visualization packages
such as EnSight1 and ParaView2 to analyze the results of calculations. A new method has been devised that extends the
capabilities of CTH to allow three-dimensional polygonal models to be written directly from a running calculation in a format
compatible to both EnSight and ParaView. Additionally, an interpreter for the scripting language Python has been embedded
into CTH and its post-processor Spymaster. Embedded Python allows for almost limitless, parallel capabilities to be added,
which do not require a recompilation or re-linking of the CTH executable. Examples of these capabilities include one- and
two-way code coupling and behind-armor debris applications.

1EnSight is a registered trademark of Computational Engineering International, Inc.
2ParaView is a registered trademark of Kitware, Inc.

15. SUBJECT TERMS

 CTH, Python, isosurface

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON

 Jerry A. Clarke
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified

17. LIMITATION
OF ABSTRACT

 SAR

18. NUMBER
OF PAGES

 15 19b. TELEPHONE NUMBER (Include area code)

 410-278-9279
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iii

1. CTH on High Performance Computing (HPC) Platforms 1

2. Extending Spymaster 1

3. Embedding an Interpreter 2

4. Using the Tools for Visualization 5

5. What’s Next 6

6. References 8

Distribution List 9

List of Figures

Figure 1. CTH data in ParaView.. 3

iv

INTENTIONALLY LEFT BLANK

1

1. CTH on High Performance Computing (HPC) Platforms

CTH is a multi-material, large deformation, strong shock wave, solid mechanics code and is one
of the most heavily used computational structural mechanics codes on Department of Defense
(DoD) HPC platforms. Typical applications of CTH on DoD platforms employ a three-
dimensional rectilinear structured mesh. Values such as material volume fraction, pressure, and
stress are calculated for the cells of this mesh and are written to files at regular intervals in the
calculation’s simulation time. CTH has added an adaptive mesh refinement (AMR) capability
which dynamically provides greater resolution in areas of interest.

AMR and non-AMR (flat mesh) data can be visualized via the Spymaster graphics package that is
included with CTH. Spymaster graphics can be produced during run time or as a post-processing
step. To enable post processing via Spymaster, CTH can produce data files in a special “spyplt”
format. On parallel platforms, CTH will typically save one spyplt file per processor used in the
calculation. Since production CTH calculations regularly require tens or hundreds of millions of
cells in the computational mesh, the amount of data saved to disk can be enormous.

Although Spymaster supports many common visualization operations, such as cutting planes and
isosurfaces, it is not an interactive graphical user interface-based application and does not present
the user with a viewing window. This can make it particularly cumbersome to use for adjusting
the viewing angle when one is generating images or movies. Because of this limitation, it is
preferable to take advantage of widely used scientific visualization packages such as EnSight and
ParaView to analyze the results of calculations. EnSight is a widely used commercial
visualization package and ParaView is a popular open source visualization package built on top
of the Visualization Toolkit (vtk).

2. Extending Spymaster

In addition to visualization of the data for analysis, the results of calculations can be used to
couple simulations. For example, we can accomplish blast loading on a structure by producing
pressure-time history curves from a CTH simulation and applying them to a finite element
structural dynamics code such as LS-DYNA1.

The eXtensible Data Model and Format (XDMF) can be used to accomplish visualization and
code coupling. For visualization, EnSight and ParaView have XDMF readers. Coupling tools

1LS-DYNA, which is not an acronym, is a trademark of Livermore Software Technology Corporation.

2

that use the XDMF format are provided within the interdisciplinary computing environment
(ICE).

Producing XDMF data from CTH requires the addition of commands to Spymaster. We
accomplish this by interfacing with the C-like language interpreter (S-Lang) which Spymaster
uses to parse input commands. Since this requires additional “C” code to be added to Spymaster
and linkage with the XDMF library, a new executable (IceSpy) is produced that understands all
normal Spymaster commands plus additional commands used to produce XDMF.

The most notable of these additional commands is

XdmfIsoAllMaterial (scalar, mirror)

This command employs the Spymaster internal isosurface generator to produce a surface for
each material in the calculation where the material volume fraction is 0.51. The scalar is used to
interpolate a value such as pressure on the surface, while mirror will reflect the surface across
planes of symmetry. Instead of the isosurface generator producing a two-dimensional image,
however, this new command produces an XDMF file with the polygons for the surfaces which
can then be imported into EnSight or ParaView.

Additional commands allow finer control such as producing surfaces of other scalars than
material volume fraction. While useful by themselves, adding more commands requires
recompiling and re-linking of the IceSpy executable. An important limitation is that the internal
Spymaster isosurface generator will only interpolate one scalar value onto the surface at a time.
This means that to color the surface by more than one scalar, we must take another approach.

3. Embedding an Interpreter

Python is a heavily used interactive, object-oriented programming scripting language. Projects
such as SPaSM (Scalable Parallel Short-range Molecular-dynamics) and VTF (Virtual Test
Facility) have shown that a Python interpreter can be embedded in a parallel high performance
computing code to provide a flexible interface to a wide variety of functionality. Using this
concept, we embedded a Python interpreter in the IceSpy executable. Two more commands have
been added to IceSpy to access python from CTH:

 XdmfPythonExecFile (filename)

 XdmfPythonExec (string)

These commands initialize the Python interpreter and execute Python commands from a file or a
string.

3

A Python interpreter itself is fairly thin and has limited functionality beyond the basic language
constructs. We obtain additional functionality by importing external modules. For example,
importing the xml.dom module allows Python scripts to easily parse XML documents. The vtk
has been wrapped to allow a Python script to access its functionality. Once imported, the vtk
module allows the user to create vtk objects and call methods from python; no code needs to be
recompiled or linked.

The same has been done for the CTH data. Once in the Python interpreter, the script can access
CTH data via classes and methods that are loaded from a module. Methods to retrieve saved
variable names and values are provided. One of the most important of these methods generates a
vtk rectilinear grid from a CTH block (AMR or flat). By importing vtk functionality, the script
can then use the full power of the vtk system to perform myriad visualization functions on the
CTH data. Since the computer-intensive portion of this processing is accomplished in the
underlying “C” or “C++” code, Python actually adds very little computational overhead while
providing enormous flexibility.

Figure 1 shows ParaView being used to visualize armor penetration data from CTH. The spyplt
data were post-processed with a Python script that runs as a parallel message-passing interface
program to generate isosurfaces and write them as XDMF data sets.

Figure 1. CTH data in ParaView.

4

With careful coding, the Python script itself can be used as input to IceSpy. The Spymaster
interpreter looks for the word “spy” and “endspy” in the input, ignoring all other lines. Usually,
these other lines are CTH input (i.e., the Spymaster input is embedded in the CTH input file), but
we can use this to provide input to the embedded interpreter. One of the simplest ways to
demonstrate this is by example:

#!/usr/bin/env python

Hide the SpyPlt Input from Python
SpyInput = """
spy

% Call every usec in simulation time
PlotTime(0, 1.0e-6);
% Parse this file
XdmfPythonExecFile(XdmfGetCommandInputFileName());

define Ice()
{
% Call the Execute() method of the object with the cycle number and time
XdmfPythonExec("IceSpy.Execute(" + string(CYCLE) + "," + string(TIME) + ")");
}

define main()
{
pprintf(" in Spy PLOT: Cycle=%d, Time=%e\n",CYCLE,TIME);
Ice();
}

endspy
"""

It's all Python from here
from Cth.IceSpy import *

class _IceSpy :
 def __init__(self) :
 self.Spy = IceSpyAbstract()

 def Execute(self, cycle, time):
 print “IceSpy Called at cycle=“, cycle, “ time = “, time

Create an instance
IceSpy = _IceSpy()

This file is first parsed by the Spymaster interpreter which begins parsing when it encounters
“spy” (highlighted in red) and stops when it encounters “endspy”. This makes a call to the
XdmfPythonExecFile() command to re-parse the file in the Python interpreter. The Python
interpreter treats the Spymaster input as just another string of data assigned to the variable
“SpyInput”. For every microsecond of simulation time, the Spymaster interpreter will call the

5

Execute() method (highlighted in blue) of the IceSpy object which then prints to the standard
output of the process.

4. Using the Tools for Visualization

With this concept, several useful Python scripts have been developed that allow users to post-
process CTH data in parallel. These scripts have been used to post-process large CTH
calculations and visualize them with ParaView via image compositing and with EnSight in the
“server of servers” mode.

The scripts are presented in the /share/CTH directory of the ICE distribution. The following is a
short description of each of the scripts.

 AllMaterials.in - uses the internal Spy isosurface generator to produce material volume
fraction isosurfaces and allows for the inclusion of one scalar value. It generates one .h5
and one .xmf file for each time step.

 LargeIsosurface.py – generates material volume fraction isosurfaces in parallel while
including all the original scalar values. This method is recommended when one is using
fewer processors than the number used in the original calculation. It generates one .h5
file and one .xmf file for every processor used to post process and an additional .xmf file
to tie the individual “per processor” files together for each time step.

 ParallelIsosurface.py - generates material volume fraction isosurfaces in parallel while
including all the original scalar values. In this case, all the individual processors write
their data back through node 0 to generate one .xmf and one .h5 file per material per time
step.

 WriteGrid.py – generates one unstructured data set for all the data in an AMR or flat
mesh. This does not create isosurfaces but an entire volume containing all the cell and
scalar data of the original calculation.

As discussed earlier, IceSpy is the executable that links Spymaster commands and the commands to
generate XDMF output. There are currently two versions of the IceSpy command, IceSpyInterim03
and IceSpy7, each corresponding with the version of CTH used to generate the spcth.x files. To use
the scripts with a particular data set, very little needs to be edited. For example, to use
AllMaterials.in, the following lines may require editing:

 Iteration = 0; “Sets the beginning for the output files. This is changed only to start
numbering with something other than 0. This is useful when one is processing

6

calculations that have been restarted and have multiple groups of spcth.x files, i.e., spcth,
spcth_a, etc.

 PlotTime(0, 1.0e-6); Just as in Spy, the first number is the “Start Time” and the second is
the time when each subsequent isosurface should be generated.

 XdmfIsoAllMaterial(P, MIR_FLAG); Here, “P” is selecting pressure as the single scalar
to map to the isosurface. Any other available scalar could replace this. For example,
“DENS” could replace “P” to map density instead of pressure.

To use LargeIsosurface.py or ParallelIsosurface, the user may only need to edit the PlotTime, as
described before. These two scripts also provide pre-set execution flags that can be edited as
needed. Listed below is that portion of the file:

 ################################
 ## Execution Flags
 ################################
 Self.WriteVtkXml = 0 # Write vtk XML Polygons instead of XDMF
 Self.CapIso = 0 # Cap Isosurface if it crosses boundary
 Self.Iteration = 0 # Number Isosurfaces starting with this number
 Self.CompressData = 1 # Compress data with zlib

Finally, the command line to run IceSpy at the U.S. Army Research Laboratory’s major shared
resource center is listed. Installation at other sites may be in a different location and involve
queuing systems, etc.

 /usr/cta/unsupported/ICE/ice5 IceSpy7 i=AllMaterials.in mv=spcth
or
 /usr/cta/unsupported/ICE/ice5 IceSpy=7 i=LargeIsosurface.py mv=spcth

5. What’s Next

ParaView recently added a native spyplt reader, and EnSight is developing one as well.
Generating isosurfaces directly from CTH data, however, is a time-consuming process and thus
well suited for batch processing, so the parallel Python scripts to generate surfaces in batch will
continue to be used. Visualization aside, the ability to access CTH AMR data in a scripting
language is particularly useful for developing coupling of CTH calculations with finite element
structural mechanics codes; data can be easily manipulated and formatted in the scripting
language and passed to the finite element code.

Finally, developing custom post-processing applications will greatly benefit from this method.
One application currently in development attempts to quantify the behind-armor debris field. In
this application, the CTH data are analyzed to produce a table of mass and velocity for each
piece of debris created during armor penetration. This table is then used as input to a

7

survivability code to determine the impact on functionality of various vehicles. Such
applications would be virtually impossible to develop from scratch without a flexible method for
accessing the results of CTH calculations.

8

6. References

1. Beazley, David M.; Lomdahl Peter S. Feeding a large-scale physics application to Python.
Proceedings of the 6th International Python Conference, pages 21–29, San Jose, CA,
October 1997.

2. Cummings, J.; Aivazis, M.; Samtaney, R.; Radovitzky, R.; Mauch, S.; Meiron, D. A Virtual
Test Facility for the Simulation of Dynamic Response in Materials. The journal of
Supercomputing August 2002, 23 (1), 39–50(12)

3. Littlefield, David L. A Brief Description of New Algorithms Incorporated into CTH: A
model for Rigid Obstacles and Interface for Coupling with Structural Codes. Texas Institute
for Computational and Applied Mathematics, The University of Texas at Austin, Technical
report November, 2001

4. Clarke, Jerry A.; Namburu, Raju R. A distributed computing environment for
interdisciplinary applications. Concurrency and Computation: Practice and Experience
November-December 2002, 14 (13–15), 1161–1174

5. Clarke, Jerry Emulating Shared Memory to Simplify Distributed memory Programming.
IEEE Computational Science and Engineering 1997, 4 (1), 55–62

6. Web site: http://www.python.org, valid as of June 11, 2005.

9

NO. OF
COPIES ORGANIZATION

 * ADMINISTRATOR
 DEFENSE TECHNICAL INFO CTR
 ATTN DTIC OCA
 8725 JOHN J KINGMAN RD STE 0944
 FT BELVOIR VA 22060-6218
 *pdf file only

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN IMNE ALC IMS MAIL & REC MGMT
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL CI OK TL TECH LIB
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 1 AERONAUTICAL SYSTEMS CTR
 ATTN RHONDA VICKERY
 HIGH PERFORMANCE COMPUTING BR
 ASC/HP BLDG 676 2435 FIFTH ST
 WRIGHT PATTERSON AFB OH 45433-7802

 2 RAYTHEON SYSTEMS
 ATTN M A BOLSTAD J C RENTERIA
 939 I BEARDS HILL RD PMB 191
 ABERDEEN MD 21001

 ABERDEEN PROVING GROUND

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL CI OK (TECH LIB)
 BLDG 4600

 1 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL CI C NIETIUBICZ
 BLDG 328

 3 DIRECTOR
 US ARMY RSCH LABORATORY
 ATTN AMSRD ARL CI HC J CLARKE
 R NAMBURU R ANGELINI
 BLDG 394

